807 research outputs found

    CHP or biofuel production in Europe?

    Get PDF
    In this study, the opportunity to invest in combined heat and power (CHP) plants and second-generation biofuel production plants in Europe is investigated. To determine the number and type of production plants, a mixed integer linear model is used, based on minimization of the total cost of the whole suply chain. Different policy scenarios are studied with varying values of carbon cost and biofuel support. The study focuses on the type of technology to invest in and the CO2 emission substitution potential, at constant energy prices. The CHP plants and the biofuel production plants are competing for the same feedstock (forest biomass), which is available in limited quantities. The results show that CP plants are preferred over biofuel production plants at high carbon costs (over 50 EUR/tCO2) and low biofuel support (below 10 EUR/GJ), whereas more biofuel production plants would be set up at high biofuel support (over 15 EUR/GJ), irrespective of the carbon cost. Regarding the CO2 emission substitution potential, the highest potential can be reached at a high carbon cost and low biofuel support. It is concluded that there is a potential conflict of interest between policies promoting increased use of biofuels, and policies aiming at decreased CO2 emissions

    Status of RF power couplers for superconducting cavities at CERN

    Get PDF
    For LEP2 fixed RF power couplers of the open-ended coaxial line type with d.c. bias are used. The nominal power under matched conditions is about 120 kW at 352 MHz. However, to avoid ponderomotive instabilities, the cavities may not be detuned, i.e. the reactive beam loading cannot be compensated. The coupler is therefore exposed to standing waves with an equivalent power (travelling-wave (TW) producing the same field as the peak fields on the coupler line) of more than 200 kW. The final design of these couplers, their conditioning sequence and their actual performance are presented. For LHC a motor-driven mobile coupler is required to change the external cavity Q by a factor of four between beam injection and storage. During injection the forward power levels at 400 MHz are about 120 kW CW (for approximately 20 minutes) and 180 kW peak (for several milliseconds). Since practically all this RF power is reflected the equivalent travelling power is 480 kW and 720 kW, respectively. These couplers will be also provided with d.c. bias to suppress multipacting and ³deconditioning²
    corecore